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ABSTRACT

We have developed Mammalian Promoter Database
(MPromDb), a novel database that integrates gene
promoters with experimentally supported annotation
of transcription start sites, cis-regulatory elements,
CpG islands and chromatin immunoprecipitation
microarray (ChIP-chip) experimental results with
intuitively designed presentation. Release 1.0 of
MPromDb currently contains 36 407 promoters and
first exons (19 170 from human, 15 953 from mouse
and 1284 from rat), 3739 transcription factor (TF)-
binding sites (2027 from human, 1181 mouse and
531 rat) and 224 TFs with links to PubMed and
GenBank references. Target promoters of TFs that
have been identified by ChIP-chip assay are integ-
rated into the database. MPromDb serves as a portal
for genome-wide promoter analysis of data generated
by ChIP-chip experimental studies. MPromDb can be
accessed from http://bioinformatics.med.ohio-state.
edu/MPromDb.

INTRODUCTION

Promoters located at the 50 ends of genes play a critical role in
regulating transcription initiation. The basal transcriptional
machinery of RNA polymerase II assembles at the core pro-
moter, which is a minimum stretch of DNA sequence from
�35 to +35 bp of the transcription start site (TSS), that is
sufficient to direct transcription initiation (1). The proximal
promoter region (upstream of the core-promoter region) con-
tains the cis-regulatory elements of most of the transcription
factors (TFs). Enhancers and silencers are located several
kbp upstream of the TSS. Extensive molecular research
has provided a wealth of information about experimentally

characterized proximal promoter sequences, TFs and their
binding sites. This information is dispersed throughout various
databases, including GenBank (2,3), PubMed (4), TRANS-
FAC (5) and DBTSS (6,7). The integration of such essential
information with the human (8,9) and rodent (10) genome seq-
uences is one of the major challenges of the post-genome era.

Novel high-throughput technologies, such as chromatin-
immunoprecipitation followed by microarray analysis
(ChIP-chip), have enabled genome-wide identification of
the epigenetic mechanisms and protein–DNA interactions
that affect gene expression (11). In recent years we (12–15)
and others (16) have successfully used ChIP-chip assays to
find the target genes of TFs in mammalian systems. A large-
scale effort to map the sequence information on the micro-
arrays to the corresponding gene promoters and integration of
the ChIP-chip experimental results into a database would
significantly help future studies focused on the modelling of
mammalian transcriptional regulatory networks (17).

Although similar promoter databases, such as Eukaryotic
Promoter database (EPD) (18), DBTSS (7) and TRED (19),
have been available to the research community, these data-
bases have their own limitations. For example, EPD and
DBTSS only contain the annotation of the TSSs. Although
TRED contains more than 50K promoters and seems more
comprehensive, it has many putative promoters obtained by
computational prediction. Computational programs, such as
FirstEF (20), can predict CpG-related promoters and first
exons with high accuracy but perform rather poorly in pre-
dicting non-CpG-related first exons and promoters. In view of
these shortcomings, we have only considered experimentally
supported data from GenBank and other primary data sources
in building Mammalian Promoter Database (MPromDb).
Here, we present a database of mammalian promoters that
are experimentally supported with experimentally known
TF-binding sites and ChIP-chip data. The data were obtained
by a computational pipeline followed by manual curation to
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ensure a high level of quality. The overall goal of MPromDb is
to integrate the ChIP-chip experimental results generated by
our laboratory and others and to serve as a portal for promoter
analysis of ChIP-chip experimental data.

DATA ACQUISITION AND INTEGRATION

Mapping experimentally supported promoter and first
exon sequences to the genome

The position relative to the TSS is the central part of promoter
annotation and is a key element to the determination of the
promoter region. Since experimentally verified promoter
sequences in GenBank are limited, we used an indirect
approach to map the first exons and promoters to the genome.
We consider promoters and first exons obtained by mapping
full-length 50-untranslated regions (50-UTRs)/mRNAs and
previously characterized promoter sequences to the genome
as experimentally supported. We collected human and mouse
promoters from DBTSS (7) and EPD (21) and full-length 50-
UTR sequences from the 50-UTR database of Davuluri et al.
(22). We then searched GenBank using composite queries
including: (‘homo sapiens’[ORGN] AND (‘50UTR’[FKEY]
OR promoter[FKEY] OR exon[FKEY] OR mRNA[FKEY]
OR prim_transcript[FKEY] NOT htgs[KEYWORD] NOT
htg[KEYWORD])) to retrieve experimentally derived first
exons, promoters, and full-length 50-UTR sequences. We
parsed these GenBank records for first exons, full-length
mRNAs, full-length 50-UTRs, and promoter sequences that
are supported by experimental evidence. The Perl script
scans each GenBank nucleotide record for mRNA, exon,
50-UTR, prim_transcript, promoter and CDS annotations. If
a feature is annotated as incomplete at the left end (e.g.
mRNA: <1..250), or is annotated as ‘putative’ or ‘evidence ¼
not experimental’, the record is ignored. The script also
ignores the records that have identical start sites for both
the mRNA (or first exon) and the CDS. We mapped all of
the resultant first exons, full-length 50-UTR/mRNA, and pro-
moter sequences to the corresponding genome sequences by
BLAT (23). The first exons that completely overlap with the
internal exons at the 50 end (as determined by using alignments
of mRNAs and expressed sequence tags to the genomic
sequence) were removed from the dataset, since these first
exons might be the result of spurious TSS annotations in
GenBank and annotations of incomplete 50-UTR/mRNA
records as 50 complete. Although some of these deleted records
might be real promoters, we have adopted these stringent
criteria in order to minimize the errors in annotation. We then
prepared a non-redundant set of mammalian promoters. Two
tandem first exons from the same gene are considered redund-
ant if they are either overlapping or the distance between their
TSSs is <500 bp. We also identify bi-directional promoters of
gene-pairs that are located in head-to-head orientation that are
separated by an inter-genic region of length <500 bp. We then
retrieved the sequence from �2K upstream to the +1K down-
stream of the first exon of each gene.

We regularly run the computational pipeline (once in 3
months) to query the PubMed, GenBank and other databases
for retrieving the new nucleotide sequence records that contain
information about experimentally validated promoters and
TF-binding sites. The current version of MPromDb contains

19 170 promoters of 15 616 human genes, 15 953 promoters of
14 157 mouse genes and 1284 promoters of 1234 rat genes. Of
thehumanandofmousegenes22%(3554) and12%(1796)have
two or more alternative promoters. Although the promoter
annotations relating to rat genes are rather limited, we expect
this to increase substantially after performing the comparative
genomic analysis orthologous genes in the future updates.

We calculated the distance between the TSS and translation
start site of the corresponding transcript, using the coding
sequence annotations of the Consensus CDS (CCDS) project
(http://www.ncbi.nlm.nih.gov/CCDS) of NCBI, for the
records that are common between MPromDb and the CCDS
database. Supplementary Figure 1 shows the histogram of the
length distribution. We found that the TSS of �30% of genes
in MPromDb start >1 kb upstream of the translation start site,
which suggests that at least 30% of the human genes have
introns in between the coding and 50-untranslated first exons.
We earlier found that �40% of the human genes have com-
pletely non-coding first exons, based on a smaller set of first
exon of 2139 genes (20).

Mapping experimentally supported cis-regulatory
elements to the corresponding gene promoters

Searching for cis-regulatory elements in published papers
through PubMed and collecting relevant information by min-
ing data from each of the papers is not a trivial task, hence the
initial search of PubMed and screening of the literature is done
by a set of Perl scripts. This is followed by manual inspection.
We also parse experimentally characterized cis-regulatory
elements described in GenBank records. Since the entries
of cis-regulatory elements in GenBank records are not con-
sistent, implementing a generic parser to parse these data is a
rather difficult exercise. Further, the TF-binding sites are too
short to use any of the sequence alignment tools or regular
expressions to map these sequences on genomes. In order to
overcome these challenges, we developed a set of compre-
hensive parsers to parse the data from different GenBank
records. During the parsing stage, the TF-binding sequences
are extended by 100 bp on either side, we then use BLAT (23)
to map these sequences to the genomic sequence. This
approach results in a precise genomic mapping of the cis-
regulatory elements to corresponding gene promoters.

The current version of MPromDb contains annotation of
3739 TF-binding sites (2027 from human, 1181 mouse and
531 rat) corresponding to 224 TFs with links to PubMed and
GenBank references. We plotted the location of the binding
sites in MPromDb relative to the corresponding TSS. Supple-
mentary Figure 2 shows the location of the annotated binding
sites relative to TSS in MPromDb. We note that �65% of the
annotated sites fall within �500 bp of the TSS.

Annotating ChIP-chip microarray data with the
corresponding promoters

There are two major types of commercially available
microarray platforms for conducting ChIP-chip experiments.
The first one is the CpG Island (CGI) microarray (Sanger 12k
ChIP) available from the UHN Microarray Center (http://
www.microarray.ca/) (24) and the Agilent promoter array,
which was initially developed by Rick Young’s group at
MIT (16,25). The Sanger 12k ChIP consists of 12 192 clones
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constructed from various CGI arrays (26), with a median
length of 500 bp for clones. The rationale for such a design
was motivated by the finding that �60% of all human genes
are associated with a CGI, usually at the 50 end (27), and�85%
of CGIs have been determined to be within �500 to +1500 bp
of a TSS (28). This array has been successfully used in our
earlier studies (12,13). The initial Agilent promoter microar-
ray that was used in mapping HNF TF-binding sites (16)
consists of 68 704 oligonucleotide probes representing the
upstream regions of 17 054 NCBI RefSeq mRNAs (29),
where each gene promoter is associated with four clones
with an average sequence length of 60 bp for each clone.
We have mapped the sequences of the CGI clones of the
CGI array and 60mer probes of the Agilent array to the cor-
responding promoters by BLAT (23). The experimental results
of different ChIP-chip studies, such as target promoter lists of
a specific TF and corresponding binding sites, were manually
collected from the published articles and integrated into the
MPromDb database. The current version of MPromDb has
binding site annotations for the following TFs mapped by
ChIP-chip studies E2F1 (15), ERa (30), Myc (12), NF-y
(31) and E2F4 (25) (Supplementary Tables 1 and 2). In a
recent study, Young and coworkers (25) have used 10-slide
promoter arrays designed by Agilent technologies to map the
transcriptional regulatory circuitry in human embryonic stem
cells. These arrays are the latest promoter arrays that contain
�400 000 features (60mers) that span�8 kb upstream to +2 kb
downstream of annotated TSSs of 17 917 genes. These
features and the binding sites of the OCT4, SOX2 and
NANOG TFs (25) will be incorporated in MPromDb in the
near future.

DATABASE ORGANIZATION

The promoter and cis-regulatory sequences, corresponding
attributes and annotation data are stored in a relational data-
base. MPromDb is structured as entity relationship model
(Supplementary Figure 3). The mammalian promoter informa-
tion stored in the ‘PromoterInfo’ table represents the backbone
of the database. The ‘BindingSiteInfo’ table stores the TF
(protein)-binding site annotations, including binding
sequence, genomic position and corresponding TF name.
The ‘GeneInfo’ table stores the gene annotation data for
each promoter. It uses UniGene information to annotate the
promoter and contains the UniGene identifier, gene symbol
and gene description. ‘PromoterSeq’ stores the promoter
sequence itself. The ‘Reference’ information associated
with cis-regulatory elements in the database such as PubMed
identifiers that can be used as links to the information is stored
as well. ‘CpGScore’ table contains the CpGscore of the all the
promoters in MPromDb.

JBoss (http://www.jboss.org) is used as the HTTP applica-
tion server with MySQL as the database server (Supplement-
ary Figure 4). It runs on Red Hat Linux Enterprise Edition 9.0.
The data acquisition pipeline for promoter annotation was
written in Perl and the web interface was written in Java.

DATA ACCESS AND VISUALIZATION

MPromDb may be accessed at http://bioinformatics.med.ohio-
state.edu/MPromDb. Users may search the database and
retrieve the promoter sequence and associated annotation

information of a specified gene in several ways. For example,
a user may obtain the promoter of a gene by searching with
Gene Name or Symbol, LocusLink identifier, UniGene iden-
tifier or GenBank accession identifier. Alternatively, a user
may obtain TF information, including binding site position,
binding sequence and promoter annotation of target gene, by
simply searching with the TF name. We provide not only
textual but also a 2D image as a gene browser to present
the search results. Currently, the available search options
for species include human, mouse and rat. Users may obtain
promoter and gene annotation information by querying
MPromDb in following ways.

(i) Quick search option enables users to query promoters
of a gene by gene name or GenBank ID or UniGene
ID or Gene ID (Figure 1).

(ii) Advanced search option enables users to query the data-
base for list of promoters with composite queries such as
species, chromosomes, promoters regulated by TFs and
users can locate promoters annotated with CpG Island
microarray and Agilent promoter microarray probes by
choosing from drop down list box (Figure 1). Choosing
the later optionwould list all the promoters that are found
in the above mentioned array types.

(iii) The gene search result page contains gene name, species,
symbol and function as important gene annotation infor-
mation.TheWebLinks entry toUCSCGenomeBrowser,
NCBI Gene Project, Stanford Source and Gene Card, of
the query result provides a cross-reference annotation of
that gene (Figure 2a).

(iv) User can click onGene ID, to access promoter annotation
information page. The result contains a table presentation
of all the TSSs (including alternative TSS) with their
chromosome, strand and genomic position information.
There are also entries, such as ‘promoter sequence’ and
link to GenBank. Promoter sequences can be retrieved
with option to pick the length of the promoter both
upstream and downstream (Figure 2c).

(v) The visualmodule in promoter annotations page provides
depiction of the promoter with corresponding TSS, bind-
ing elements, other TFs relative to the TSS and CpG
Island information. We have implemented an in house
developed JAVA� application framework called the
GenomeDataVisualizationToolKit forMPromDbinfor-
mation presentation in the form of an image map of gene
regulatory regions with interactive contextual menus for
easy navigation (32). The mouse-over option is a user-
friendly feature that contains the respectiveTFnamewith
genomic position and binding site motif (Figure 2b).

(vi) If a specific promoter is located in CpG Island array or
Agilent array, it is displayed as an additional track with
probe sequences being displayed as rectangle boxes
(Figure 2b).

(vii) The CpG score is depicted as a histogram, where the line
of score 6.5 is used to represent the cut-off value to deter-
mine whether the promoter is CpG or non-CpG related.

(viii) The textual data provides information in static form,
which includes the TF name, its positions and sequence,
and respective binding site reference, with link to
PubMed (4) and GenBank (3).
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FUTURE DIRECTIONS

The long-term goal of this database is to contribute to the
understanding of mammalian gene transcriptional regulation.
As more data are published, we will continue to incorporate
the annotations into the content of MPromDb. This database
will provide the foundation for further promoter analysis
such as developing novel algorithms for TF-binding site search
and characterizing gene regulatory modules. Future plans

include the integration of more ChIP-chip data about TF target
genes, regional histone acetylation and methylation modifica-
tions and CpG Island methylation patterns around gene
promoters. In conclusion, MPromDb provides integrated
transcriptional regulatory information with genomic context
in an easily accessible way.We believe that its implementation
will facilitate large-scale promoter analysis and contribute
towards the elucidation of mammalian transcritptional regu-
latory networks.

Figure 1. Search options forMPromDb.Users can query promoters of a gene bygene nameorGenBank IDorUniGene IDorGene ID.Advancedoptions enables user
search for promoters by chromosome and by different array platforms (CpG Island and Agilent).
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Additional information on methods and implementation
is available at http://bioinformatics.med.ohio-state.edu/
MPromDb/si.jsp.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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